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In order to compute the the motion of bubbles relative to a fluid, it is necessary to 
know the forces acting on them. In a dispersed medium the interaction between inclusions 
via the carrier phase can significantly affect the forces acting on the inclusions, and this 
force depends on the microstructure of the medium [i]. Two limiting cases are a regular 
distribution, where the distance between neighboring inclusions is approximately constant, 
and a random distribution, where the inclusions are distributed randomly. 

Calculation of the interfacial force in a medium with bubbles in the special case where 
there are no gradients of the flow parameters reduces (as shown in [2], for example) to a 
calculation of the effective mass of a bubble in the mixture. The effective mass of inclu- 
sions in a dispersed medium is calculated in many papers under various assumptions. An analysis 
and review of these results is given in [2]. 

In the general case where there are gradients of the flow parameters, the interfacial 
force for a fluid with bubbles has been studied much less. A detailed analysis in this case 
has been considered only for mixtures with a regular structure. In [i] the cell method is 
used to study the interfacial force and a review of the literature is given. 

In the present paper we present a method based on the averaging of the microequations 
of the interfacial interactions for the case of mixtures with a random structure. Unlike 
[2], we consider the case where the characteristics of the dispersed medium vary along the 
z axis. The effect of gradients of the average parameters on the interfacial force is studied. 

i. Basic Assumptions 

We assume that the carrier medium is an ideal fluid and the bubbles are spherical. It 
was shown in [3] that these assumptions are valid for bubbles of moderate size. In addition, 
we assume that the medium is monodispersed, that the flow of the carrier phase is potential 
flow, and that the distribution of bubble centers is random [2, 4]. For simplicity we con- 
sider the one-dimensional form of the problem: the average parameters of the medium vary 
only along the z axis and do not depend on the other coordinates (x, y). 

The average force acting on an isolated (test) bubble is determined by averaging the 
force acting on the bubbles when their distribution relative to each other is given. In 
order to calculate the force acting on a test bubble with a given distribution of the other 
bubbles, it is necessary to know the translational velocities of the bubbles, which in turn 
depend on the forces. In general, the problem cannot be solved. Therefore, in the present 
paper we study an approximation method for determining the velocities of the bubbles and 
then calculate the average force. It was shown in [2] that it is physically justifiable 
to assume that the velocities of the bubbles relative to the fluid are constants for any 
distribution of bubbles. This assumption qualitatively reflects the basic features of the 
motion of bubbles in a carrier medium; in particular, it describes the effect of a more rapid 
translation of two bubbles moving one behind the other in comparison with the translation 
of a single bubble and also the displacement of the velocity vector of a pair of bubbles 
in the direction of the line joining their centers (in comparison with the velocity vector 
of a single bubble). 

Following [2], the z component of the velocity of the i-th bubble Av relative to the 
fluid for a given distribution of other inclusions is calculated from the equation Av = 
-2k/R ~, where k is the coefficient of the associatedLegendre function of the first kind 
P1~ e) in the expansion of the velocity potential of the carrier medium near the i-th 
bubble. It is easy to show that this relation reduces to the usual one for the motion of a 
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single bubble in an infinite fluid. The components of the velocity in the x and y directions 

are determined in a similar way. 

2. Basic Equations 

The average interfacial force is calculated as follows. The velocity profile of the 
fluid for a given distribution of bubbles is calculated with the necessary degree of accuracy. 
Using the known velocity profile, the pressure distribution on the surface of a fixed bubble 
is determined, and thus the force acting on it is calculated. Averaging the force acting 
on the bubble with respect to the positions of the bubbles gives the average interfacial 
force. 

The velocity potential ~ of the fluid in the region near the bubble satisfies the equa- 
tion 

A~ = O, (2.1) 

and in order to solve this equation it is necessary to know the boundary conditions. On 
the boundary F 0 of the region G occupied by the mixture, it is natural to specify the normal 
component of the velocity v ~ 

- -  = n v  o (ro)  ( 2 . 2 )  
On p~ 

(n is the normal to the surface). 

On the surfaces of the bubbles Fi (i is the number of the bubble, i = I, 2 .... , N, where 
N is the n~nber of bubbles in the mixture) the condition of nonpenetrability of fluid can 
be written as 

"~lp~ = nv~  (2.3) 

(v2i is the velocity of motion of the i-th bubble). The vectors v2 i are chosen such that 
the velocity of a bubble relative to the fluid is equal to Av(r), which is a given smooth 
function of position. 

Equation (2.1), with the boundary conditions (2.2) and (2.3), determines the velocity 
potential of the fluid, to within an insignificant constant; its solution will be constructed 
by successive approximations, giving the perturbations on groups of bubbles with respect 
to the others and the boundaries of the region [2, 5]. 

The first approximation ~I is written in the form 

N 

q oI= ~, q~,, (2.4) 
i=l 

I 
where ~i is the velocity potential of the fluid from the motion of the i-th bubble in an 
infinite fluid. 

The second approximation ~2 is found from the condition that the sum ~i_~ satisfies 
(2.1) and the conditions on the boundary r 0 of region G occupied by the mixture. In view 
of the linearity of the problem and the representation (2.4), the potential 

N 

Here ~ does not depend on the positions of the bubbles, while ~ depends only on the position 
of the i-th bubble. 

The third approximation ~3 is written in a form similar to the first: 

N 
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The potential ~ = 9 1 +  92 + 93 satisfies the boundary conditions on the surface of the i-th 

bubble. 

The successive approximations are constructed in a similar way. The equations satisfied 
by 9~i, 9 ~ are given in [2]. 

The exact solution of (2.1) with the boundary conditions (2.2) and (2.3) is given by 

= E 9  ( 2 . 5 )  
h = l  

The velocity potential of the fluid near two moving bubbles constructed in this way, as shown 
in [5], rapidly converges to the exact potential for any distance between the inclusions 
(including the case where they are touching). 

It is easy to show that among the terms of (2.5) there is one which does not depend 
on the positions of the bubbles (~)~ two which depend on the position of one bubble (~, 9~), 
terms which depend on the positions of two bubbles (there are such terms in 93), etc. There- 
fore, (2.5) for the potential is conveniently rewritten as 

N 

9 = 9 ( r i r l ~  . . . .  rN) = E E~ (r); 
z=o ( 2 . 6 )  

X? = E zt(rlr~l . . . . .  riO. 
N ( 2 . 7 )  

Wil , . . . , i /  

The summation in (2.7) goes over all combinations wil N ..... i~ of ~ bubbles taken out of N. 
The function x~(rlril , .... ri~) depends on the positions of s bubbles with numbers il, ..., 
i~. The quantity X~ ~ will be called the ~-th partial term of the potential. 

The force acting on a bubble in an ideal inviscid carrier medium is determined by the 
pressure distribution around the bubble and can be calculated from the formula 

F =-- ~ pnds, ( 2 . 8 )  
r 1 

where F l is the surface of the test bubble, and p is the pressure in the fluid. 

The pressure is found from the Cauchy-Lagrange integral [6] 

o~ p(V~) ~ 
p = o f ( t ) + p U - - o - d -  f -  ~ . ( 2 . 9 )  

Here ~ is the velocity potential of the fluid; t is the time; f(t) is a function of time; 
U is the potential of the body force, here taken to be the force of gravity. 

We substitute (2.9) into (2.8). The first term of (2.9) gives a zero contribution, 
and the second term gives the buoyance force FA = 4/3~Rapge z (R is the radius of the bubble, 
g is the acceleration of gravity, and ez is a unit vector along the z axis). The other terms 
in the force F depend upon the positions of all of the bubbles and, therefore, we isolate 
one of the bubbles (let it have the number i) and average the force over the positions of 
all the other bubbles, i.e., we multiply by the distribution function fN and integrate over 
the state space. The final expression for the average force is: 

<F> = + G + F,  = G + P E cos 0ds + p ( W )   cos 0d , 
\ r  I / 

(2.10) 

where < > denotes an average over the positions of the bubbles; 8 is the angle between the 
radius vector at the point where the potential is being computed and the z axis. 

Formulas (2.6) and (2.7) can then be written in the form: 
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q~ --= q~ (r, r 11 r>, r~) ~ o , . 
. . . .  = X~s('), ( 2 . 1 1 )  

zTi = ~ z, i  (r,  r ,  l l ' i,, . .  r iD.  
N " .t 

"il ( 2 . 1 2 )  �9 , . . . , i l  

Here the function Xs rllril, ..., ris contains all terms of the total potential depen- 
dent upon the positions of the bubbles il, ..., is It is not important whether it depends 
on the position of the first (test) bubble or not. 

. Calculation of the Term F~ in (2.10) 

Using the fact that N >> i, the term F I can be written as 

N 

: : • 

X . . .  7Zls (r '  rllr~ . . . . .  rl+~) X 
r 2 r / + l  F 1 

X ]1 (r 1 I r.~ . . . . .  r~+l) cos Odsd'~r2 . . .  d.~rl+l, 

( 3 . 1 )  

where a2 is the volume concentration of bubbles and ff(rlir 2 ..... rs I) is the s partial 
distribution function of the centers of the bubbles [7] subject to the condition that the 
first bubble is found at point rl. The representation (3.1) correctly gives the expansion 
of the original integral in a power series in a2 in the case when the integrals on the right- 
hand side of (3.1) have finite limits when G ~ ~ and ~2 + 0 (G is the volume of the mixture). 

For a medium with a regular structure, these integrals diverge [2]. However, for a 
medium with a random structure whose average characteristics do not vary along the z axis, 
8Xs was calculated in [2] and it was shown there that the integrals on the right-hand 
side of (3.1) are convergent and finite for s ~ 2, and this is also true in the case con- 
sidered here. We will calculate the force to first order in a 2. It is then sufficient to 
calculate the integrals of 8X0f/St and 8X1f/St. In order to do this, it is necessary to 
know all of the approximations in the iteration scheme, but only taking into account two 
bubbles. This means, in effect, that the exact solution of the two-bubble problem must be 
found. It can be shown [2] that the contributions from the third and higher approximations 
can be found directly from (3.1) by numerical methods. The contribution from the first two 
approximations is considerably more complicated to calculate. This is because, beginning 
with the tihird approximation, the potential falls off more rapidly than a quadrupole poten- 
tial, and ~i contains a dipole component. Therefore, it is convenient to consider the con- 
tribution :from ~ = ~* + ~ separately. The averaging procedure is simpler and there is 
no loss of generality in assuming that rl = 0, although v2 1 ~ 0. Let the coordinate system 
be referred to the boundary r 0 of the region occupied by the mixture. We introduce the nota- 
tion: 

A~(r) = i i OAio i 02Aio 
~ , , ~  Ax =- '~ 'z  ~ A2 = (az)-----r~, 

0 A o i 0 A a A~ 03A~~ 2 i 2 i 

Then from the algorithm for constructing ~ we obtain 

N 

@l + ~2 = X R3A" (5, t) 
2 A1 + ~p2; 

i = l  (3 .2)  

OAu (r, t) ~ r 
= - -  - -  v~z(~,:t) -- Ot 2 A oAu (r, 0 + Oz r=r~ 

t) [A~,~= + ~ . ~  + A~ ,~ ] }  + -a- -- n v  (ri~ �9 i i A ~ ,~ i ~ 0V ~ 

[ v 2 i ( V 2 x  i ,  V2y 1 , V 2 z i )  i s  t h e  v e l o c i t y  o f  t h e  i - t h  b u b b l e ] .  

(3.3) 
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It is impossible to average (3.3) directly over the positions of the bubbles because 
~: does not fall off rapidly enough and the corresponding integral will diverge. Therefore, 
in averaging (3.3) we use the method of [2]. The quantity 8(~ ~ + ~2)/8t can be related to 
the average parameters of the fluid. Then the difference can be expressed in terms of conver- 
gent integrals, and in the final expression we put the average parameters of the fluid. In 
order to do this, we make use of Green's relation 

~ - w y ; ] a  s,. 
V S 

( 3 . 4 )  

where V is an arbitrary volume; S is its surface; ~ and ~ are arbitrary twice-differentiable 
functions. 

As the volume V we take G minus the volume of the test bubble, and for ~ and ~ we use 
~l = 8(~ I + ~2)/8t and ~z = cos0/Ir]2, respectively. Then after some straightforward reduc- 
tions, taking into account that AA01 =--4~6(r- r i) and AAz i =-4~8[~(r- ri)]/Sz [9], we have 

Fo F1 PI 

2 z_~ Ply, (3.6) 

i i i i i" i i i p,~ : A: (0) kl + Av (ri, t) [v,zAa (0) + v, xAax (0) + v,uAa~ (0)]) 

k~ o~( , , t )  I + ~  I ,~ : - -  U2z ~ 
~3t r = r i  ~z r = r i  

The first term on the right-hand side of (3.5) is proportional to the contribution ~i ~ ~ 
in the force F due to the term 8~/8t, i.e., it is proportional to the desired quantity. 

However, several quantities which are in general unknown appear in (3.5) to a more con- 
venient form. This can be done applying (3.4) two more times: the first time, V = G z (the 
volume of the test bubble), and for ~ we use ~i = 8( ~I + ~2)/St, while for ~ we use ~2 = 
Irl cos 8; the second time the distribution of bubbles is such that the observation point 
(origin of the coordinate system) is in the fluid. The volume is V = G. For ~ we use ~ 2 = 
8(~ I + ~2)/8t, and for ~ we use ~1 = cosS/Irl 2. Completing the calculations and averaging 
over the positions of the bubbles, (3.5) takes the form 

3 an (<~2>l-- <~l>)dZs+ 4n T nl[p12g ([re l)-- 

4n / a \ 4n R 3 - (P~)'gt ( i r~' i) ] d~r~' + \ ~  ~ I ' , / -  ~ T k~, 

( 3 . 7 )  

where the subscript s corresponds to the case where the observation point is in the fluid; 
n I is the number of bubbles per unit volume of the mixture; g(Ir2[) is the binary correla- 
tion function [7]; gs is the ratio of the probability of finding a bubble at a distance 
Ir2[ from the observation point (inside the fluid) to n I. 

The quantities Pz2 and (P12)s are given by the same formula (3.6), but differ because 
they involve the velocities of the bubbles, which depend on whether the bubble is at the 
observation point or not. In general, the velocity v21 depends on the positions of all of 
the bubbles. However, the integral over region G on the right-hand side of (3.7) is already 
of order a 2. Therefore, the integrand and the velocity of the bubble can be calculated to 
order (a2) ~ It can be shown that, in this case, in the calculation of v2 i entering into 
(Pz2)s it is necessary to take into account only the velocity of the carrier medium and 
the velocity of slipping Av of the second bubble relative to the carrier medium. In the 
calculation of v2 i entering into Pz2, it is necessary to take into account the velocity of 
the carrier medium, the velocity of slipping of the second bubble relative to the carrier 
medium, and the correction to the velocity of the second bubble induced by the first bubble. 
The contribution of the other bubbles to the velocity of motion of the second bubble is of 
order ~2 when averaged over the positions of the other bubbles and can be neglected. 
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Unfortunately, even this simplification of the problem does not permit an analytical 
calculation of the velocity of the second bubble entering into Pi2, because, in order to 
do this, it would be necessary to find an exact solution of the problem of the motion of 
two bubbles in an infinite fluid. The solution of this problem, as found by the method of 
successive approximations, is in the form of an infinite series which, as already noted above, 
rapidly converges. Therefore, in the present paper, the velocity of the second bubble is 
calculated by keeping only the first term of this series. 

The quantities g(Ir21) and g~(lr21) in (3.7) are calculated to order (~2) ~ which means 
that for a random distribution of bubbles they are given by the formulas [4] 

{0 when tr2l<~2R, . {0 when Ir l <n, 
g ( l " ~ l ) =  t when Ir21>2R , g~( lrzl )= I when t rz l>R.  

Finally, it can easily be shown that the first term on the right-hand side of (3.7) 
is of order I/L (L is the characteristic linear dimension of the region G) and can be neglected. 

Using the above simplifications, after lengthy calculation it can be shown that (3.7) 
becomes 

(3.8) 

Since we took into account the contribution of ~i ~ ~2 in F I of (2.10) separately, 
the contribution F1d of the remaining terms of the series for the exact potential ~, can be 
taken into account directly with the use of the expansion (3.1): 

Fld = % ~ . . . .  e,t XI (r, r~ I r.,) Ix (r l  I rz)cos  Od2sdar2. 
1~1 r2 

The potential • cannot be evaluated analytically (it can be represented as an infinite 
series). As noted above, we can limit the expansion of the potential ~p to the first prin- 
cipal term after the terms ~' ~2 which have already been taken into account. The result 
is that the contribution of this term to the force acting on a bubble is equal to zero. Hence, 
(3.8) is an accurate expression for F~. 

The quantity <8~2/8z> = <a2(q ~i +q~2)/SzSt)>~ appears in (3.8). This quantity is con- 
veniently expressed in terms of the derivative of the average velocity of the fluid <SV~z/St> ~. 
The exact expression for <V~z> has the form 

<vu)t= f . . .  ~a-~(fpl~ -q~+...).fx(01rl . . . . .  rA.)d:~rt...d:~r.y. 
r l  r N 

Using (2.6) and following a procedure similar to that used in deriving (3.1), it can 
be shown that in the calculation of the fluid velocity to order (~2) I, it is sufficient to 
include only the single-particle interaction in (3.10); Xi ~ appears in ~ in the first approxi- 
mation, and also in all of the successive approximations because of the boundaries. However, 
the contribution of the single-particle interaction in the approximations higher than the 
first is of order I/L and, therefore, can be neglected in the limit L ~ ~. Therefore, we 
have the relation 

dz t i" (3.9) 

For a closed model of a two-phase medium, the force must be expressed in terms of the 
derivatives of the average quantities, which in general are not equal to the average values 
of the derivatives [i]. Therefore, a relation between the quantities <~V~z>~/St and <SV~z/ 
3t> E would be useful. From (3.2) we have 
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R"A•(5' 0 ~ 
vt~ = 2 A1 + ( 3 . 1 0 )  

i = l  

Using (3.10) we can immediately calculate <Svs s and 8<V~z>s and we finally obtain 

/avz~ \ 8 (~t~>z <v2~> + + Av ( 3 . 1 1 )  = - -  v : ,  O A r  3 OAr <v2~ > ~.., Oa 2 
\ - ~  / z ot -" ~ 5 o~ T F  

From (3.8), (3.9), (3.11) and the equation of continuity for the bubbles, we find an 
expression for the term F I in (2.10): 

4 . OA,, 3 A v ~  + 
F1 = "T nR~P a~Lxv ~ 40 Ot 

5 i)z 2 \ Ot + <v2z> --~zy)" 

( 3 . 1 2 )  

4. Calculation of the Term F 2 in (2.10) 

The term F 2 of the total force <F> is determined, according to (2.10), by the expression 

P S F~ = T <(V~) ~> cos Od"s. ( 4 . 1 )  
r 1 

One c a n n o t  u s e  ( 4 . 1 )  d i r e c t l y  b e c a u s e  Vq~ i n  g e n e r a l  d i v e r g e s  a s  t h e  s i z e  o f  t h e  r e g i o n  
G i n c r e a s e s  ( i f  t h e  v o l u m e  c o n c e n t r a t i o n  o f  i n c l u s i o n s  i s  c o n s t a n t ) .  T h e r e f o r e ,  a s  d o n e  
a b o v e ,  i t  i s  n e c e s s a r y  t o  s e p a r a t e  t h e  d i v e r g e n t  p a r t  f r o m  ( 4 . 1 )  and  e x p r e s s  i t  i n  t e r m s  
o f  t h e  a v e r a g e  c h a r a c t e r i s t i c s  o f  t h e  c a r r i e r  medium.  I n  o r d e r  t o  do t h i s ,  we u s e  t h e  f o r m u l a  

((VT) 2) == (VT) 2 ~ ((V~')2), (4.2) 

where 

VV =V~-- (V~). 

It can be shown that the second term on the right-hand side of (4.2) to order (~2) I 
can be expressed in terms of a convergent integral of the one-particle terms of the poten- 
tial 

<(V~')z> = ~ ( V x ,  (r, r 1 [r2) '%(r2) " "Z---g(lr2n)darv (4.3) 
r~ T zRa 

In the first term on the right-hand side of (4.2) it is necessary to evaluate the aver- 
age gradient of the potential induced by the other bubbles. As in the calculation of FI, 
contributions from the quadrupole terms (they fall off as i/Jr i - ri[4), and from higher- 
order terms converge and can be calculated directly. The dipole terms fall off as i/Jr i - 
r1[ 3 and, therefore, the contribution from these terms diverges as the region G increases. 
Divergent dipole terms of this type appear only in the first two approximations ~i ~2 to 
the exact potential. Therefore, the contribution of these terms must be expressed in terms 
of the average parameters of the fluid. Using (3.4) for this purpose, we find 

~2 T nRa 
R3 �9 

g ([ r 2 [)) d3r2 + -y  Av (r 1, t) A 1 -- 2XnO 

After rather complicated calculations, we obtain expressions for <8(~ I + ~2)/8zw and 
<8(~ I + ~2)/ay> = <3(~ l + ~2)/~x>. 

In order to calculate the contribution to <8~/SXn> from the higher-order approximations 
to the exact potential, we must solve numerically the problem of the motion of two bubbles 
in an infinite fluid. We limit ourselves to the first approximation (after ~! and ~ 2 ) to the 
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exact potential. Unlike the case of F I (Sec. 3), this approximation gives a zero contribu- 
tion to F 2. The final formula (with the inclusion of the first correction) has the form 

/ or \ r~ a~ (,~, 0 (3 cos 2 ~ - 1) - \ ,  -~-z /  = vl~ I~=r~ + 2 

3 o (%A,) 
2 Oz R~os ~ sin z ~, 

/ O q ~ \ l l  3 Av(rl ,  3 a(a~Av) \ ' ~ ' ~  / r l  = T t) cos oc sin o~ cos ~ + 2 ~z R c o s ~  sincccos2~, 

(4.4) 

where R, a, and ~ are the coordinates of a point on the surface of the bubble at which the 
velocity is defined in spherical coordinates with the origin at the center of the first bubble 
and the polar axis directed along Av. 

Using (4.4) we can calculate the contribution to F 2 of the first term of (4.2) 

4 o (o~,Av) - -  < v l ~ > l + T A v  . <V~> 2 cos Od% = -$ ~R ~ 7fz 
1" 1 

(4.5) 

In order to calculate the contribution to F 2 from the-second term of (4.2) we substitute 
the first approximation to the exact solution of the two-bubble problem into (4.2). After 
rather lengthy calculations we find 

f ( ~  (Av)D. 
~ R  3 0 , <(VcP') 2) cos Od~s = -f-~ 

r l  
(4.6) 

Finally, from (2.10), (3.16), (4.1), (4.2), (4.5), (4.6), and the equation of continuity 
we obtain the following expression for the average force acting on a bubble in a dispersed 
medium with a random distribution of inclusions: 

~.~ . .  [ (dl <"l~>~ ) 1 (  d:~ <''~> 

- -  0,6 (Av) 2 --g- - - ~  O,~)o~.,Ac._ ---o: 3' 

dl 0 d d 2 
dt Ot "I-, <V/z>l-~-z, dt 

~t~ < " . ) i  ) 
dt n,,. - ( 4 . 7  ) 

d ,) 

+<l'~=>-~f. m = l .  ,.)t 

The first term on the right-hand side of (4.7) is the usual buoyancy force, calculated 
with respect to the gravitational acceleration of the fluid; the second is the effective 
mass force acting on the bubble. It is the same as the force acting on a single bubble in 
an infinite fluid. Recall that in the derivation of (4.7) we used only the first approxi- 
mation (after ~i and (p~) to the exact solution of the two-bubble problem. The effective 
mass was calculated exactly in [2] and it was found that m = 1 + 0.092~ 2. The third and 
fourth terms in (4.7) give the contributions to the force which are linear in the volume 
concentration of bubbles. These terms are due to collective interactions between the in- 
clusions and depend on the derivatives of the average quantities. They do not have analogs 
in the expression for the force acting on a single bubble. 
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RELATIONSHIP BETWEEN THE FLOW PARAMETERS OF CONCENTRATED 

HIGH-POLYMER SOLUTIONS AND THEIR MEAN-STATISTICAL 

ORIENTATIONAL STRUCTURE 

V. I. Popov UDC 532.7 

The questions of the quality of polymer processing, for example by the methods of extru- 
sion technology, and the production of high modular polymeric materials largely depend on 
the existence of a monitorable relationship between the external parameters of the process- 
ing of polymer media and their internal microstructure. 

In this work this problem is analyzed for concentrated solutions of high-polymers (CSH) 
with the help of the structural~henomenological model of polymers [I, 2]. The model is 
based on structural representations of the uniform, isotropic fluctuation network (Fig. i), 
describing the specific structural features of CSH, consisting of the fact that in the single- 
relaxation approximation the concentrated polymer solution in a low-molecular solvent is 
modeled as a collection of statistically distributed effective network sites (segments) of 
rubbing with the solvent, spatially linked with one another by elastic subchains with kinetic 
rigidity. Kinetic rigidity refers to the well-known fact that a subchain cannot assume some 
conformations by a relative displacement of its tips. 

The determination of the mean-statistical orientational structures of CSH follows from 
their rheodynamic description and the construction of the model. An important question ad- 
dressed by the microscopic description of CSH is taking into account the interaction of the 
structural units of flow with their environment in the field of shear, entropic, and diffu- 
sion forces. In this case, this is the interaction of the randomly distributed network sites 
of rubbing with the solvent, linked with one another by elastic subchains with rigidity. 
Unlike theories for weakly concentrated solutions of polymers with solitary macromolecules 
[3-5] the interaction is sought relative to the center of mass 0 of the sites xi ~, neighbor- 
ing the xi chosen for the analysis. The result is the mean stress, i.e., the reaction to ex- 
ternal effect G of the statistically distributed rubbing sites interacting with one another 
(by means of the bonds) and with the solvent. 

The physics of the phenomenon is as follows. At rest, the effective site of CSH, driven 
by Brownian forces of thermal motion and entropy forces pulling toward the center, undergoes 
around the center of mass a random walk with a rapidly decreasing Gaussian probability density 
distribution function. The matrix of the components of the moments of the probability den- 
sity distribution function of such a walk has an equivalent diagonal form, and the radius 
vector (Fig. i) of the deviation equals x = 0.25sb 2 (b is the length of the segment of rubbing, 
s is the number of segments in the subchain of the macromolecule). 

Under the action of the external ordering forces, aside from these forces a Stokes fric- 
tion force, owing to the defect in the velocity of the random walk of the site and the solvent 
at this point, and an internal friction force, associated with the fact that the segments 
of the subchains cannot assume all possible conformations by means of the relative displace- 
ment of their tips (the property of kinetic rigidity), act on the site. 

In this case of distinguished directions, the probability density distribution function 
of the position of the sites will become distorted. The radius vector, the probability of 
whose length characterizes the deviation of the sites from the position of equilibrium, in 
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